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Figure 1. Our approach can attack various vision tasks, i.e, (a) instance segmentation, (b) object detection and (c) classification with
images of arbitrary scales. The first row shows benign examples and the last two rows display images attacked by our approach.

Abstract

Traditional Lp norm-restricted image attack algorithms
suffer from poor transferability to black box scenarios
and poor robustness to defense algorithms. Recent CNN
generator-based attack approaches can synthesize unre-
stricted and semantically meaningful entities to the image,
which is shown to be transferable and robust. However,
such methods attack images by either synthesizing local

adversarial entities, which are only suitable for attacking
specific contents or performing global attacks, which are
only applicable to a specific image scale. In this paper,
we propose a novel Patch Quilting Generative Adversar-
ial Networks (PQ-GAN) to learn the first scale-free CNN
generator that can be applied to attack images with arbi-
trary scales for various computer vision tasks. The princi-
pal investigation on transferability of the generated adver-
sarial examples, robustness to defense frameworks, and vi-
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Work Photo-realistic Scale-free Task-agnostic Black-box Defense
UAP CVPR’2018 [52] ✓ ✓ ✓

AdvFaces IJCB’2020 [14] ✓ ✓
ColorFool CVPR’2020 [61] ✓ ✓ ✓ ✓
RA-AVA IJCAI’2021 [68] ✓ ✓ ✓

Shadows Attack CVPR’2022 [78] ✓ ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

Table 1. The comparison of our attack method to the previous works. Our attack method is scale-free, task-agnostic, and imperceptible.
Meanwhile, we experimentally show that our method has high black-box transferability and is robust to existing defense algorithms.

sual quality assessment show that the proposed PQG-based
attack framework outperforms the other nine state-of-the-
art adversarial attack approaches when attacking the neu-
ral networks trained on two standard evaluation datasets
(i.e., ImageNet and CityScapes). Our anonymous code
is made available at https://anonymous.4open.
science/r/PQAttack-0781.

1. Introduction
Deep Neural Networks (DNNs) are vulnerable to adver-

sarial examples, e.g., images with carefully designed adver-
sarial perturbations can easily mislead well-trained DNNs
to output incorrect predictions. To overcome such mali-
cious attacks, several adversarial defense algorithms have
been proposed, which, in turns, simulate the development
of robust adversarial attack algorithms to disrupt these de-
fenses. Therefore, investigating robust and powerful image
attack algorithms plays a crucial role in progressing current
research toward developing strong defense algorithms.

Traditional image attack approaches [7,17,20,24,47,51,
65, 72] focus on generating perturbations at the pixel-level
withLp-norm restrictions, which possess strong capabilities
to mislead predictors but are imperceptible to human eyes.
However, the attack strength of such restricted approaches
cannot be transferred to unseen networks and the noises are
easily defensed [12,77]. Subsequently, many studies devote
their efforts to formulating methods that deliver more ro-
bust attack patterns against the defense algorithms. Some of
them add noisy perturbation with weaker restriction [52,66]
or even without restriction [10]. Despite that larger pertur-
bation boosts up the transferability and robustness of attack
algorithms, the perturbation is perceptible to human eyes
and the adversarial examples not photo-realistic.

To solve this problem, some studies employ generative
adversarial networks (GAN) [23] to generate semantically
meaningful local entities and synthesize them to the image
[30,38,39,62,75,78] or to change the texture of a particular
area of the image [18, 32]. Such GAN-style methods can
generate robust and transferable adversarial examples with
high image quality. However, such methods are designed
for a specific task, such as face recognition [38] and vehicle
motion prediction [39]. (Problem 1). Alternatively, instead

of generating a local entity, some works propose methods
that generate adversarial examples in an end-to-end manner
where a global adversarial perturbation is carefully hidden
in the target image [4,14,33,43,53,55,73,76]. However, due
to the limitation of traditional GAN structure, these meth-
ods can only generate adversarial examples of one particular
or highly limited scale (Problem 2). The whole generative
network must be re-trained when changing the target image
scale. It is worth mentioning that some works can generate
adversarial examples with global semantic patterns without
using GAN [5, 21, 54, 61, 68]. However, these methods can
only generate a specific attack pattern with carefully de-
signed math formulation, which cannot be extended to gen-
eral usage.

In this paper, we propose a novel Patch Quilting Genera-
tive Adversarial Network (PQ-GAN) to address the afore-
mentioned problems of existing image attack algorithms.
The PQ-GAN learns three cascaded generators that can syn-
thesize photo-realistic, scale-free patterns to attack target
images of any scale on the whole-image level (globally)
(addressing the problem 2). Importantly, the synthesized
realistic and semantically meaningful pattern ensures the
visual quality of the adversarial examples. Task agnos-
tic property allows our approach to be applied to generat-
ing various photo-realistic patterns, e.g., rain streaks, snow
flakes, and camera lens dirt. It can be applied to many com-
puter vision tasks such as image classification, object detec-
tion, instance segmentation, etc. (addressing the problem
1). In addition, our approach generates patterns with unre-
stricted pixel value, ensuring transferability and robustness.
The main advantages of our approach compared to existing
approaches are listed in Table 1. The main contributions
and novelties of the proposed approach are summarized as
follows:

• We propose a PQ-GAN-based unrestricted adversarial
attack pipeline that generates various global adversar-
ial patterns to attack images. This method is not lim-
ited to attack images of any particular scale or com-
puter vision task, namely, scale-free and task-agnostic.

• We propose a novel PQ-GAN which can learn three
cascaded generators that synthesize photo-realistic and
semantically meaningful images of any scale without
any distortion or discontinuity. To the best of our
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Figure 2. Illustration of the Patch Quilting Attack pipeline (Top) and the training strategy of the Patch Quilting Generator (Bottom).

knowledge, this is the first deep learning generator that
can synthesize images of any scale.

• The principal investigation results demonstrate that our
approach delivers state-of-the-art attack strength and
transferability among the existing synthesis-based at-
tack methods, and our experiments verify the domi-
nance of the proposed approach against various types
of defense algorithms.

2. Related Work
Task/contents-specific Adversarial Attack: Traditional
adversarial attack strategies [7,16,17,24,65] are extensively
researched to generate adversarial examples by adding Lp

bounded adversarial perturbations to the target images.
Such strategies usually lack robustness to the defense algo-
rithms [13, 41, 48, 59, 63, 77] as the highly restricted pertur-
bations are easily removed. As a result, some recent studies
attempted to replace the Lp constraint with either percep-
tual similarity [71] or JNDp [18] constraint. Recently, Luo
et al. [46] further propose to add perturbations to attack im-
ages based on semantic similarity. To further improve the
robustness, others [40, 44, 74] propose to generate a seman-
tic meaningful local patch to attack images. For example,
some studies attack facial images by adding a glass [62], a
hat [38], or makeups [30, 75] to the target face. Eykholt et
al. [19] propose to add graffiti to attack road signs. Duan et
al. [18] and Zhong et al. [78] perform style transfer or add
shadow to attack a selected region in the image. Besides,
some studies are built on specific math formulas to gen-

erate specific robust and global attack patterns, including
haze [21], vignetting [68], and moire pattern [54]. While
the aforementioned strategies can generate robust attacks,
most of them still suffer from three main problems: (i) some
of them can be only applied to limited application scenarios
such as the human face [30, 38, 62, 75] or road sign [19];
(ii) most of them are only suitable for attacking networks
of a specific computer vision task (e.g., image classification
networks [6, 74] or object detection networks [40, 44]); and
(iii) they are still not robust enough to recently proposed
advanced defense algorithms [13, 41, 48, 63, 77].
Scale-specific Generative Model-based Adversarial At-
tack: To obtain human-realistic and more robust attack
patterns with high diversity for various scenarios, recent
approaches frequently employ Generative Adversarial Net-
works (GAN)-style generators to synthesize semantic pat-
terns [4, 38, 43, 75]. This is because GAN [23] has been
widely used in many areas due to its capability of learn-
ing and generating various robust data distributions. How-
ever, these approaches can only generate attack patterns of
a fixed scale decided by the pre-defined generator because
the traditional GAN structure is designed for fix-scale im-
age generation. Although some researchers propose hierar-
chical [8, 34, 60] or growing convolution [35] architectures
to generate images of different resolutions by picking the
feature map from different layers, they can only generate
patterns of a small set of pre-defined resolutions, which can-
not be fully reusable under scale-agnostic adversarial attack
scenario. In this paper, we propose an image Patch Quilting
Generative Adversarial Network (PQ-GAN) that can gener-
ate patterns of any scale without retraining the model.
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3. Methodology
3.1. Patch Quiliting Attack

Given a target network of agnostic image analysis task
with model parameters φ and a loss functionL(φ, I, y) used
for model training, where y is the label of the benign image
I , the goal to find an adversarial example Iadv that max-
imizes L(φ, Iadv, y) under the restriction that Iadv is per-
ceptually natural. In particular, Fig. 2 illustrates our scale-
agnostic generative model (whose model parameters are
represented as ψ), namely Patch Quilting Generator (PQG).
The PQG takes a set of latent embeddingsZ initialized with
Gaussian distribution of mean 0 and standard deviation 1 as
the input, which controls the characteristic of the pattern,
and outputs a photo-realistic pattern P I . Then, P I is syn-
thesized to the target image I to produce an adversarial ex-
ample Iadv that is perceptually natural. Now the problem is
transformed to find a set of latent embeddings Z that maxi-
mize L(φ, Iadv, y), which is formulated as:

maxZ L(φ, Iadv, y)
Subject to Iadv = Syn(I,P I)

where P I = PQG(Z, ψ)
(1)

Notice that PQG is a pre-trained model that does not need
to be retrained in this attack stage. We explain the latent
embeddings Z and how the PQG is designed to be scale-
agnostic in detail in Sec. 3.2. Syn(⋅) is a customized synthe-
sis function depends on the target pattern, (i.e. pixel-wised
addition, or depth-aware synthesis [31]).

To achieve the adversarial objective, we simply apply
gradient ascent to the loss function being use for model train
to update the latent embeddings Z through iterations, i.e.,

Zt+1 ← Zt + α∇ZtL(φ, Iadv, y) (2)

where t is the time-stamp and α denotes the learning rate.
We put Z of the last iteration into PQG to generate the ad-
versarial example.

3.2. Patch Quilting GAN

3.2.1 Scale-free Image Generation via PQG

The Patch Quilting Generator (PQG) consists of three cas-
caded generators GPAT, GHS, and GVS with the learnable
weights ψPAT, ψHS, ψVS, where each can generate image
patches of the scale h×w. PQG takes three sets of latent em-
beddings Z = {ZPAT,ZHS,ZVS} as the input, and outputs a
set of patches of the scale h×w, which contain the required
attack pattern. These patches can then be combined as a
smooth and photo-realistic global attack pattern P I whose
scale can be customized based on the target image.

As shown in Fig. 2, given a target image I with the
scale of H ×W , our PQG first initializes an attack pattern

P raw ∈ RĤ×Ŵ , which consists of a integral number of empty
patches of size h ×w, i.e. Ĥ, Ŵ are formulated as:

Ĥ = Nh × h, Ŵ = Nw ×w (3)

where Nh = ceil(H
h
), Nw = ceil(W

w
) denote the minimum

number of patches that are required to fill up each row and
column, ceil(⋅)means rounding up to an integer. Then three
generators then generates a set of attack patches as follows:

Firstly, GPAT takes a set of latent embeddings ZPAT to
generate a set of attack patches PPAT to fill up non-adjacent
odd rows and columns in the P raw. Let NPAT

h = ceil(Nh

2
)

and NPAT
w = ceil(Nw

2
). This step can be formulated as:

praw
2a−1,2b−1 ∈ PPAT = GPAT(ZPAT, ψPAT)

Subject to ZPAT = {z2a−1,2b−1 ∈ N (0,1)
k
}

a ∈ {1,2,⋯,NPAT
h }, b ∈ {1,2,⋯,N

PAT
w }

(4)

where praw
2a−1,2b−1 denotes the image patch located at the 2a−

1th row and 2b − 1th, while z2a−1,2b−1 ∈ N (0,1)k denotes
the latent embedding of dimension k being used to generate
praw
2a−1,2b−1.

Secondly, GHS generates a set of horizontal context-
aware realistic adversarial attack patches PHS where each
pathc fills up a horizontal gap in P raw based on not only
ZHS but also its horizontal neighbours in P raw, which are
generated from GPAT. By letting NHS

h = ceil(Nh

2
) and

NHS
w = ceil(Nw

2
) − 1, this process is formulated as:

praw
2a−1,2b ∈ PHS = GHS(ZHS, p

raw
2a±1,2b+1, ψHS)

Subject to ZHS = {z2a−1,2b ∈ N (0,1)
k
}

a ∈ {1,2,⋯,NHS
h }, b ∈ {1,2,⋯,N

HS
w }

(5)

Notice that praw
2a−1,2b±1 ∈ PPAT.

Finally, GVS generates a set of vertical context-aware re-
alistic adversarial attack patches PVS, targeting on filling
up the rest regions (all vertical gaps) in P raw. Specifically,
each patch generated by GVS fills up a gap based on not
only ZVS but also its vertical neighbours in P raw. By letting
NVS

h = ceil(Nh

2
) − 1 and NVS

w = Nw, which are produced
from GPAT as:

praw
2a,b ∈ PVS = GVS(ZVS, p

raw
2a±1,b, ψVS)

Subject to ZVS = {z2a,b ∈ N (0,1)
k
}

a ∈ {1,2,⋯,NVS
h }, b ∈ {1,2,⋯,N

VS
w }

(6)

Notice that praw
2a±1,b ∈ PPAT⋃PHS.

Consequently, a global pattern P̂ raw is obtained by filling
all patches of the P raw, where attack patches produced by
three generators are concatenated. We then remove the extra
pixels of the P̂ raw ∈ RĤ×Ŵ to make it have the same size
H ×W to the target image I , which is denoted as the final
P I . In summary, the proposed PQG can not only synthesize
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Figure 3. Visualization of adversarial examples generated by various attack methods. Our adversarial examples successfully mislead the
target classifier. Note that our attack method can generate high-resolution adversarial examples with the original image scale.

global image attack patterns of any required scale without
requiring re-training the network, but also allow the final
produced pattern to be smooth, continuous and semantically
meaningful.

3.2.2 PQ-GAN Optimization

To learn three generators of the POG, we propose a GAN-
style training strategy (called PQ-GAN). To produce a glob-
ally smooth and continuous attack pattern, we propose a
Intra-Patch Smoothness Loss to ensure each generated at-
tack patch to be smooth and photo-realistic, and a Inter-
Patch Smoothness Loss to enforce the smoothness be-
tween neighbor patches.
Intra-Patch Smoothness Loss: As displayed at the bot-
tom of the Fig. 2, we collect all the patches Pintra =
PPAT⋃PHS⋃PVS generated by generators of the POG,
treating them as negative samples, while a set of positive
samples P̃intra = {p̃mintra∣ m = 1,2,⋯,Mintra} are obtained by
randomly cropping a set of ground truth patches of size h×w
from the a ground truth Pattern P̃ , where Mintra equals the
number of patches in Pintra. All negative and positive sam-
ple are then fed into a discriminator D to calculate the gen-
erator loss and discriminator loss, respectively, based on the
standard formulation of the Wasserstein GAN with gradient
penalty [3]. This process is formulated as:

Lintra =LGPAT(Pintra, ψPAT) +LGHS(Pintra, ψHS) +LGVS(Pintra, ψVS)+

LD(Pintra, ψD) +LD(P̃intra, ψD) (7)

where LGPAT(Pintra, ψPAT), LGHS(Pintra, ψHS), and
LGVS(Pintra, ψVS) denotes the generator loss of patches
PPAT, PHS, and PVS, respectively. LD(Pintra, ψD) denotes
the discriminator loss of negative samples Pintra, and
LD(P̃intra, ψD) denotes the discriminator loss of positive
samples P̃intra.
Inter-Patch Smoothness Loss: To ensure the smooth-
ness and continuity among neighboring patches, we ad-
ditionally randomly crop Minter patches Pinter = {pminter∣ m =
1,2,⋯,Minter} of size h ×w from the generated attack pat-
tern P̂ raw and treat them as negative samples, where Minter
is a hyper-parameter. To balance between the positive and

Snow Flakes Rain DropsLens DirtRain streaks

Figure 4. Four different patterns generated by our Patch Quilt-
ing Generator. PQG can generate patterns of any scale with great
variety which is the key to the adversarial attack strength.

negative samples, we then randomly crop the same num-
ber of patches P̃inter = {p̃minter∣ m = 1,2,⋯,Minter} from the
ground truth pattern P̃ . We feed P inter and P̃ inter to D and
compute the loss as:

Linter = LD(Pinter, ψD) +LD(P̃inter, ψD) (8)

where LD(P inter, ψD) and LD(P̃ inter, ψD) denotes the dis-
criminator loss obtained from negative samples P inter and
positive samples P̃ inter, respectively. For the details of how
the generator loss and discriminator loss respect to the neg-
ative samples and positive samples being calculated, please
refer to Arjovsky et al. [3].

Consequently, the final loss for training PQ-GAN is
obtained by combining Inter- and intra-Patch Smoothness
losses as:

LPQGAN = Lintra +Linter (9)

The combined loss would enforce three generators to be
jointly learned for generating a smooth and continuous
global attack pattern of any scale.

4. Experiment
In this section, we demonstrate the effectiveness of the

proposed method under various settings. The experimental
setup is introduced in Sec. 4.1. To evaluate the task-agnostic
property of our method, we compare it with existing ap-
proaches based on three computer vision tasks, i.e., image
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Model ATK Region Attack Methods ResNet-18 VGG-19 ResNet-50 Inception-V3 MobileNet-V3
None 67.3 68.3 74.0 71.3 66.1

Pixel-wise FGSM ICLR’2014 [24] 3.8∗(63.5↓) 54.3 (14.0↓) 56.4 (17.6↓) 59.2 (12.1↓) 53.0 (13.1↓)
C&W IEEE SP’2017 [7] 0.0∗(67.3↓) 55.8 (12.5↓) 57.6 (16.4↓) 60.1 (11.2↓) 53.1 (13.0↓)

Local Shadow ATK CVPR’2022 [78] 16.7∗(50.6↓) 56.4 (11.9↓) 56.9 (17.1↓) 57.3 (14.0↓) 51.4 (14.7↓)
ColorFool CVPR’2020 [61] 9.3∗(58.0↓) 55.2 (13.1↓) 56.4 (17.6↓) 60.1 (11.2↓) 53.5 (12.6↓)

Global

IadvHaze Arxiv’2021 [21] 21.4∗(55.9↓) 54.5 (13.8↓) 56.0 (18.0↓) 58.4 (12.9↓) 48.3 (18.8↓)
ResNet-18 RA-AVA IJCAI’2021 [68] 4.2∗(63.1↓) 55.5 (12.8↓) 54.7 (19.3↓) 55.6 (15.7↓) 48.0 (18.1↓)

Rain Streaks (Ours) 3.6∗(63.7↓) 52.2 (16.1↓) 54.6 (19.4↓) 54.3 (17.0↓) 48.0 (18.1↓)
Lens Dirt (Ours) 4.3∗(63.0↓) 50.0 (18.3↓) 54.5 (19.5↓) 55.7 (15.6↓) 48.3 (17.8↓)

Snow Flakes (Ours) 2.5∗(64.8↓) 51.0 (17.3↓) 53.6 (20.4↓) 56.1 (15.2↓) 48.8 (17.3↓)
Rain Drops (Ours) 2.1∗(65.2↓) 49.1 (19.2↓) 54.0 (20.0↓) 53.8 (17.5↓) 46.5 (19.6↓)

Pixel-wise FGSM ICLR’2014 [24] 54.8 (12.5↓) 5.2∗ (63.1↓) 57.1 (16.9↓) 58.3 (13.0↓) 53.0 (13.1↓)
C&W IEEE SP’2017 [7] 55.6 (11.7↓) 0.0∗ (68.3↓) 58.2 (15.8↓) 58.4 (12.9↓) 52.6 (13.5↓)

Local Shadow ATK CVPR’2022 [78] 54.6 (12.7↓) 14.8∗(53.5↓) 55.2 (18.8↓) 57.4 (13.9↓) 50.6 (15.5↓)
ColorFool CVPR’2020 [61] 53.4 (13.9↓) 10.1∗ (58.2↓) 55.2 (18.8↓) 58.1 (13.2↓) 53.0 (13.1↓)

Global

IadvHaze Arxiv’2021 [21] 55.1 (12.2↓) 25.1∗ (43.2↓) 55.8 (18.2↓) 60.0 (11.3↓) 48.2 (17.9↓)
VGG-19 RA-AVA IJCAI’2021 [68] 51.3 (16.0↓) 5.1∗ (63.2↓) 54.6 (19.4↓) 55.6 (15.7↓) 48.1 (18.0↓)

Rain Streaks (Ours) 50.5 (16.8↓) 3.4∗ (64.9↓) 52.8 (21.2↓) 55.1 (16.2↓) 47.4 (18.7↓)
Lens Dirt (Ours) 49.5 (17.8↓) 4.3∗ (64.0↓) 53.1 (20.9↓) 55.6 (15.7↓) 48.3 (17.8↓)

Snow Flakes (Ours) 49.3 (18.0↓) 2.1∗(66.2↓) 52.5 (21.5↓) 54.0 (17.3↓) 47.4 (18.7↓)
Rain Drops (Ours) 49.8 (17.5↓) 2.7∗ (65.6↓) 52.1 (21.9↓) 53.0 (18.3↓) 47.8 (18.3↓)

Table 2. Accuracy (%) of five trained models on clean images and adversarial examples. ∗ indicates the result of the white box attack;
ATK Region stands for attack region. Our attack methods beat all unrestricted attack methods under the white-box scenario. Although the
traditional Lp restricted attack methods (C&W and FGSM) have great performance in the white-box scenario, the attack strength cannot
be transferred to the unseen models. Under the black-box scenario, our methods beat all other methods with great improvement, indicating
that our attack method is more transferable across unseen models.

classification, object detection, and instance segmentation.
Specifically, we evaluate the white-box attack strength and
black-box transferability in Sec. 4.2, as well as the robust-
ness against the defense algorithms in Sec. 4.3. We also
compare the quality of the adversarial examples produced
by our method and others. In addition, we adopt three no-
reference image quality assessment metrics to quantify the
image quality in Sec. 4.4.

4.1. Experimental Setup

Dataset: The image classification experiments are con-
ducted on 5000 randomly selected images from the valida-
tion set of the ImageNet [15] while the object detection and
instance segmentation experiments are conducted on the en-
tire validation set of the CityScapes dataset [11].
Implementation details: We employed 2000 (256×256)
training samples for each of the four patterns: rain streak,
rain drop, snow flakes, and camera lens dirt. Chen et al. [9]
provides a set of snow flakes patterns where we randomly
chose 2000 images for PQG training. Camera lens dirt pat-
terns were generated by randomly adding 30 to 60 white
points on a dark image and applying Gaussian blur with
kernel standard deviation σ = 5. Rain streak patterns are
generated according to Garg et al. [22]; rain drop pattern is
an internet image and we perform Aguerrebere et al. [2] to
generate 2000 patterns of similar distribution. The synthe-
sis strategy of rain drops, snow flakes, and lens dirt patterns
are pixel-wise addition formulated as Iadv = I +γ∗P I . For

ATK Methods mAP % ↓
Fr Mk

clean 40.3 36.4
DPatch [44] 8.8∗ 15.3
AdvPatch [40] 5.5∗ 9.6
UAP [40] 12.1∗ 12.2
RS (Ours) 4.2∗ 5.1
LD (Ours) 5.3∗ 7.7
SF (Ours) 4.9∗ 4.8
RD (Ours) 5.8∗ 5.5

(a) Object Detection (Target
Network: Faster RCNN)

ATK Methods mAP % ↓
Fr Mk

clean 40.3 36.4
DPatch [44] / /
AdvPatch [40] / /
UAP [52] 13.5 6.3∗

RS (Ours) 9.1 2.1∗
LD (Ours) 10.1 3.0∗

SF (Ours) 8.2 2.4∗

RD (Ours) 9.4 2.5∗

(b) Instance Segmentation (Target
Network: Mask RCNN)

Table 3. Compare the cross-task transferability with other attack
methods. RS, LD, SF, and RD are the abbreviations of our at-
tack methods using Rain Streak, Lens Dirt, Snow Flakes, and Rain
Drops patterns, respectively. Fr and Mk stand for Faster-RCNN
and Mask-RCNN, respectively. Note that DPatch and AdvPatch
are designed for attacking object detection models only.
rain streaks patterns, we performed depth-aware synthesis
according to Hu et al. [31]. Subsequently, we individually
train four PQGs, each of which can generate various attack
images containing the required pattern (See Fig. 4). During
the PQG-based Attack, each attack loop consists of 300 it-
erations with Eq. (2) by default. Detailed parameter settings
are provided in the supplementary material.

4.2. Transferability

Cross-model Transferability: In our experiment, five
classifiers including ResNet-18 [27], ResNet-50 [27],
VGG-19 [64], Inception-V3 [67], and MobileNet-V3 [29],
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（a）Rain Streaks （b）Snow Flakes （c）Rain Drops （d）Lens Dirt

Figure 5. Four kinds of attack patterns generated by our approach. These patterns are scale-free, realistic, and misleading to instance
segmentation models (the two columns on the left) and detectors (the two columns on the right).

Attack
Defense None JPEG HFC HGD APE DEF-GAN

FGSM [24] 3.8 61.5 64.7 64.7 61.9 60.9
C&W [7] 0.0 64.0 65.5 65.5 64.8 61.0
IadvHaze [21] 21.4 45.5 46.3 35.7 41.4 35.7
RA-AVA [68] 4.2 40.2 41.6 43.9 48.9 42.2
ColorFool [61] 9.3 10.4 11.9 12.4 25.1 40.1
Shadow [78] 16.7 18.1 18.5 21.0 22.7 33.4
RS (Ours) 3.6 12.1 11.5 13.2 15.9 26.5
LD (Ours) 4.3 10.3 12.8 12.2 21.9 28.0
SF (Ours) 2.5 9.9 13.3 12.5 14.5 23.4
RD (Ours) 2.3 9.7 10.7 12.1 13.6 25.8

(a) Image Classification (ResNet-18).

Attack
Defense None JPEG HFC HGD APE DEF-GAN

DPatch [44] 8.8 9.5 10.6 14.1 13.9 21.5
AdvPatch [40] 5.5 7.1 8.5 10.5 12.4 15.7
UAP [40] 12.1 14.7 13.5 15.2 13.0 13.2
RS (Ours) 4.2 5.0 5.1 5.6 7.2 8.8
LD (Ours) 5.3 5.9 5.6 6.7 8.3 9.1
SF (Ours) 5.8 7.6 8.1 7.6 7.9 9.9
RD (Ours) 4.9 6.4 7.1 8.2 8.9 8.8

(b) Object Detection (Faster-RCNN)

Attack
Defense None JPEG HFC HGD APE DEF-GAN

UAP [52] 6.3 7.2 9.4 9.0 8.6 7.3
RS (Ours) 2.1 2.9 4.4 4.7 5.4 6.0
LD (Ours) 3.0 2.9 4.3 4.2 5.6 5.8
SF (Ours) 2.4 2.9 4.3 4.6 5.2 6.0
RD (Ours) 2.5 4.4 4.7 4.6 4.7 5.2

(c) Instance Segmentation (Mask-RCNN)

Table 4. Classification accuracy % (a) and mean average precision
% (b,c) of the model on the adversarial examples generated by dif-
ferent attack methods (first columns) and the adversarial examples
that different defense algorithms (first row) are applied.

are employed. We also additionally compare our method
with two traditional attack methods: FGSM [24] and C&W
[7], two unrestricted local attack methods: ColorFool [61]
and Shadow Attack [78], as well as two unrestricted global
attack methods: Adversarial Vignetting Attack (AVA) [68]
and Adversarial Haze [21]. We employ the classification ac-
curacy as the evaluation metric, where lower classification

accuracy indicates better attack performance.
As shown in Tab. 2, our methods achieved the best per-

formance among all compared attack models. Compared to
existing approaches, our method provides at least 17.80%
and 18.88% average performance drops for ResNet-18 and
VGG-19 based classifiers. For example, when our approach
attacks ResNet-18 with the Rain Drops attack pattern and
transfer the adversarial examples to VGG-19, the classifica-
tion accuracy is largely decreased from 68.3% to 49.1%,
while the second best only decreasing the corresponding
system to 54.3%. Fig. 3 also illustrates the adversarial
examples produced from different methods on. It can be
observed that our method can generate more photo-realistic
attack patterns, but the other methods will destroy the struc-
ture (Shadow Atatck) or color (ColorFool) of the benign im-
age.
Cross-task Transferability: To further demonstrate the
effectiveness of our approach, we then evaluate the trans-
ferability of the generated adversarial examples under the
cross-task and cross-model scenarios, i.e., we generate
the adversarial examples by the objection detection model
(Faster RCNN [58]) and transfer to the instance segmenta-
tion model (Mask RCNN [26]), and vice versa. we compare
our results with a task-agnostic attack methods: UAP [52]
and two task-specific attack methods: DPatch [44] and Ad-
vPatch [40]. We employ the mean average precision (mAP
%) as the evaluation metric, where lower mAP indicates
better attack performance.

As shown in Tab. 3 (a), we employ the Faster RCNN
as the surrogate model to generate the adversarial exam-
ples and test in the Mask RCNN. The results indicate that
our attack decreases the original mAP by a large margin,
i.e., 31.3% with the Rain Streaks attack pattern, 30.9%
with the Rain Drops attack pattern, and so on. Compared
with the current state-of-the-art method AdvPatch, we also
achieve competitive results: the result of AdvPatch is 9.6%,
and our best result is 5.1%, which is significantly lower.
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In Tab. 3(b), we generate the adversarial patterns through
Mask RCNN against the Fast RCNN. Our PQAttack still
achieves competitive results. Using the Snow Flakes pat-
tern, an improvement of 5.3% is achieved by PQAttack
(8.2%) compared with UAP (13.5%).

4.3. Robustness

To evaluate the robustness, we apply three smoothing-
based defense algorithms, JPEG Compression [13], High
Frequency Suppression [77], HGD [41], and two GAN-
based defense algorithms Ape-GAN [63], Defense-GAN
[59] to the adversarial examples generated by our meth-
ods. Tab. 4 reports the experimental results on: (a) at-
tacking image classification, (b) object detection, and (c)
instance segmentation models. Smoothing-based defense
algorithms (JPEG, HFC, HGD) are very effective in defend-
ing Lp-restricted attack methods (C&W, FGSM, and UAP)
but less effective in defending unrestricted attack methods.
To illustrate this, we also visualize the adversarial trajecto-
ries in Fig. 6.

Defense GAN [59] defense by learning the distribution
of the benign images, which can identify and remove the
disconformities between the distribution of the adversar-
ial examples and benign images [59], therefore very effec-
tive in defending the local attack methods (ColorFool [61],
Shadow Attack [78], DPatch [44], AdvPatch [40]). Differ-
ent from the local attack methods, our method synthesizes
semantic-aware adversarial patterns globally, which is very
difficult to remove.

Figure 6. Adversarial trajectories visualized by the PCA [1] di-
mension reduction algorithm. The decision boundaries are plotted
by applying SVM [28] to the reduced vectors. The adversarial ex-
ample gradually departs from its original class (blue) and moves
to the target class (red) through the adversarial attack iterations.
The JPEG compression defense algorithm [13] successfully de-
fense the restricted method C&W (green stars) by pulling the ad-
versarial examples back from the decision boundary, but it fails to
defend our method because our method has no pixel-value restric-
tion, and our adversarial example (yellow triangles) move much
further apart from the decision boundary.

4.4. Image Quality

For visualization, some typical adversarial examples of
the Cityscapes and ImageNet are illustrated in Fig. 1, 3, and

ATK BRISQUE ↓ NIQE ↓ PIQE ↓
Clean 22.4207 3.6792 32.1288
C&W [7] 32.1891 8.5136 36.1667
FGSM [24] 43.9118 17.8617 59.1998
IadvHaze [21] 41.6842 12.7820 72.2287
RA-AVA [68] 33.2389 9.3145 32.8531
ColorFool [61] 29.4896 5.1896 31.3078
Shadow [78] 30.7310 5.1603 30.9756
RS (Ours) 30.3656 5.6763 30.5022
LD (Ours) 27.3893 6.2135 31.8128
SF (Ours) 32.6419 4.8950 33.2251
RD (Ours) 31.2009 6.5481 32.9371

Table 5. Results of three non-reference image quality assessment
metrics BRISQUE [49], NIQE [50] and PIQE [69] being evaluated
on the adversarial examples generated by seven attack approaches.
All adversarial examples are generated from the pre-selected 5000
images from the ImageNet dataset [15].

5. We observe that our method can generate patterns that are
noticeable but natural to human eyes, i.e., it is hard for hu-
mans to identify the adversarial examples without referring
to the original images. Meanwhile, the adversarial exam-
ple can mislead the networks to give an incorrect output. It
means that our generated semantic attack not only deceives
the human visual system but also cheats the machine vision
system.

We further employ three reference-free image quality as-
sessment metrics: BRISQUE [49], NIQE [50] and PIQE
[69] to quantify the image quality. We compare the average
scores of the adversarial examples generated by different at-
tack methods. The results shown in Tab. 5 demonstrate that
the adversarial examples produced by our approach have the
best image quality among all adversarial examples.

5. Conclusion
This paper proposes a novel PQ-GAN for adversarial at-

tack, which learns a set of generators called PQG. This is
the first generator-based approach that can generate photo-
realistic patterns of any scale, which can be used to attack
various computer vision tasks. The results show that our
PQAttack approach achieved state-of-the-art results in mis-
leading various white-box and black-box computer vision
models. Importantly, the adversarial examples produced by
our approach are not only robust to various defense algo-
rithms but also have high visual qualities.
Limitations and future works: The main limitation of
our method is that our PQG can only generate limited types
of attack patterns (e.g., rain and snow). However, it cannot
generate patterns such as landscapes. we aim to address this
in the future to generate more diversified scale-free attack
patterns.
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A. Results of Cross-model Transferability
We additionally evaluate the cross-model transferabil-

ity of our attack method on the Object Detection and In-
stance Segmentation task. For Object Detection, we choose
Faster-RCNN [58] to be the target networks and transfer
the adversarial examples to YOLOv3 [57] and Deformable
DETR [79]. For Instance Segmentation, we choose Mask-
RCNN [26] to be the target networks and transfer the ad-
versarial examples to PointRend [37] and SOLO [70]. The
results are shown on Tab. S1.

Attack Methods mAP %↓
FR-RCNN [58] YOLO [57] DETR [79]

clean 40.3 32.8 46.6
DPatch [44] 8.8∗ 12.3 20.2
AdvPatch [40] 5.5∗ 12.5 15.4
UAP [52] 12.1∗ 11.5 13.5
Rain Streaks (Ours) 4.2∗ 7.8 9.2
Lens Dirt (Ours) 5.3∗ 10.2 12.4
Snow Flakes (Ours) 4.9∗ 8.3 9.7
Rain Drops (Ours) 5.8∗ 7.7 11.0

(a) Object Detection (Target Network: Faster-RCNN)

Attack Methods mAP %↓
Mk-RCNN [26] PtRend [37] SOLO [70]

clean 36.4 37.1 34.9
UAP [52] 6.3∗ 9.7 8.5
Rain Streaks (Ours) 2.1∗ 7.8 7.3
Lens Dirt (Ours) 3.0∗ 10.1 9.4
Snow Flakes (Ours) 2.4∗ 7.5 8.3
Rain Drops (Ours) 2.5∗ 8.5 8.8

(b) Instance Segmentation (Target Network: Mask-RCNN)

Table S1. The performances of cross-model transferability on the
object detection and instance segmentation task with other attack
methods. The white box attack results are marked with ∗.

B. Explainability and Sensitivity Analysis
B.1. PQ-GAN Architecture

To assist further analysis, we provide the details of the
proposed PQ-GAN architecture in Fig. S2. In Eq. 5 and 6,
we introduce the input and output of the generators GHS and
GVS. To better extract the spacial relation between patches,
we concatenate praw

2a±1,2b+1 and a zero patch of the same size
to get P input

HS of scale h × 3w to be the input of GHS, where
h,w is the pre-defined patch size. Similarly, we concatenate
praw
2a±1,2b±1, praw

2a,2b±1 and three zero patches to get P input
VS of

scale 3h× 3w to be the input of GVS, by Examples of P input
HS

and P input
VS are depicted in Fig. S1.

B.2. Explainability of the Patch-wise Smoothness

GHS and GVS generate horizontal smoothness patches
and vertical smoothness patches by considering their neigh-
bor patches, i.e., each praw

2a−1,2b ∈ PHS is generated con-
ditioned to P input

HS which contains praw
2a±1,2b+1, while each

Attention Map of

Attention Map of

Figure S1. Visualization of P input
HS and P input

VS with their atten-
tion map obtained by applying Ramaswamy et al. [56]. GHS and
GVS pay the most attention to the edges between generated and
empty patches, which results in the smoothness between neighbor
patches.

praw
2a,2 ∈ PVS is conditioned to P input

VS which contains
praw
2a±1,2b±1 and praw

2a,2b±1. We draw the attention map of P input
HS

and P input
VS to show how GHS and GVS pay attention to the

neighbor patches, which is shown in Fig. S1.

B.3. Influence of the Latent Vector’s Dimensions

The adversarial attack strength is usually highly affected
by the degree of freedom. For example, in traditional noise-
based adversarial attack algorithms, tighter pixel-wise lp
constraint usually leads to weaker attack strength. An ex-
treme case is that one-pixel attack algorithm [65] has much
lower attack strength than global attack algorithms. Instead
of modifying the image pixel-wisely, our method modifies
the latent embedding Z of PQG. We want to see how the
dimension k of the latent embedding Z affects the attack
strength. We train PQG using Rain Streak samples with
four different dimensions k = {8,32,128,512} and use it to
evaluate the white-box attack performance and black-box
transferability on the ImageNet classification task. We can
see from Fig. S3 that the classification accuracy decrease as
the k increases. It is especially influential under the white
box scenario and when k is small. The classification accu-
racy tends to be steady as k goes above 128.
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Figure S2. Two PQ-GAN architecture of patch size (32x32) and (64x64).

Figure S3. The white-box and black-box attack performance eval-
uation on the PQG w.r.t to the different dimension (8, 32, 128 and
512) of the latent embeddings.

C. Hyper-parameters Setups
PQ-GAN: We conduct two different patch sizes, 32 × 32
and 64 × 64. We use patch size of 64 × 64 for training the
PQGAN of the rain streaks and snow flakes patterns and
32 × 32 for training the PQGAN of the rain drops and lens
dirt patterns. The dimension k of each latent vector in Z
is 128. During PQG training time, PQG generates images
of size 256 × 256 with batch size set to be 4. The whole
dataset (2000 images) is iterated 8 times. For the Inter-Patch
Smoothness Loss, we setMinter = 32. Following the training
setup of the Wasstarian GAN with gradient penalty [25],
we use λ = 10, ncritic = 5, α = 0.0001, β1 = 0, β2 = 0.9,
where λ is the coefficient of the gradient penalty; ncritic is
the ratio of generator updates to each discriminator updates;

α is the learning rate; β1 and β2 are the hyperparameters
of the Adam [36] optimizer. For more information, please
refer to Gulrajani et al. [25].
PQAttack: The synthesis strategy of rain drops, snow
flakes, and lens dirt patterns are pixel-wise addition are for-
mulated as Iadv = I + γ ∗ P I , where γ = 0.3 is used for
rain drops and snow flakes patterns, γ = −0.3 is used for
lens dirt patterns. For rain streaks patterns, we performed
depth-aware synthesis according to Hu et al. [31], where
we use α = 0.03, β = 0.04. During the PQG-based Attack,
each attack loop consists 300 iterations by default, where
Adam [36] optimizer is employed with β1 = 0.9, β2 = 0.999
and a starting learning rate lr = 0.03. We also use cosine
annealing scheduler [45] for learning rate decay.
Pre-trained Target Networks: All image classification
pre-trained weights are obtained from the PyTorch model
library. Pretrained weights of Mask-RCNN and Faster-
RCNN are obtained from the OpenMMLab. YOLOv3 [57],
Deformable BETR [79], PointRend [37], and SOLO [70]
are trained using Cityscapes [11] standard training set with
pre-trained weights on COCO dataset [42]. Deformable
BETR, PointRend, and SOLO are trained with batch size
8 for 64 epochs, while YOLOv3 are trained with batch size
32 for 273 epochs.
Attack Methods: We follow the standard hyper-parameter
setup for all attack methods.
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D. Patterns generated by PQG
Our proposed PQG can be used to generate patterns of

any size without retraining the network. We display patterns
of size 896× 896 (A), 512× 512 (B), 1024 × 256 (C), 128 ×
1000 (D), 384 × 512 (E), 128 × 408 (F) in Fig. S4 and S5.

Smooth between patches

Patch size: 
(64 x 64)

Rain Streaks Patterns

512 x 512 1024 x 256896 x 896

384 x 512

128 x 1000 128 x 408

Snow Flakes Patterns

Smooth between patches

Patch size: 
(64 x 64) 512 x 512 1024 x 256896 x 896

384 x 512

128 x 1000 128 x 408

A B C

D

E

F

A B C

D

E

F

Figure S4. Rain streaks and snow flakes patterns generated by our proposed PQG with patch size equals 64. Neighbor patches (marked in
yellow and pink rectangles) are connected smoothly.
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Patch size: 
(32 x 32)

Smooth between patches

128 x 1000 128 x 408

512 x 512 1024 x 256896 x 896

Rain Drops Patterns

Lens Dirt Patterns
512 x 512 1024 x 256896 x 896

128 x 1408

Smooth between patches

Patch size: 
(32 x 32)

384 x 512

128 x 1000

384 x 512

A B C

D

E

F

A B C

D

E

F

Figure S5. Snow Flakes and lens dirt patterns generated by our proposed PQG with patch size equals 32. Neighbor patches (marked in
yellow and pink rectangles) are connected smoothly.
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E. Visualization of Our Adversarial Examples

green mamba

fiddler crab

white heron

Welsh corgi

brown bear

mongoose

lycaenid

chameleon green mamba chameleon chameleon

hornbill hornbill hornbill hornbill

white stork spoonbill white stork wheaten terrier

griffon chihuahua chihuahua Chihuahua

sea lion sea lion sea lion sea lion

baboon baboon baboon baboon

boat paddle boat paddle boat paddle boat paddle

Clean Rain Streaks Lens Dirt Rain Drops Snow Flakes

Figure S6. Adversarial Examples of ImageNet dataset. The classification results are shown in the bottom right of each image.
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Clean Rain Streaks Lens Dirt Rain Drops Snow Flakes

Figure S7. Adversarial Examples of CityScapes dataset. The Object Detection and Instance Segmentation results are shown in the odd and
even rows, respectively.
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