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Abstract. Due to the difficulty of cancer samples collection and annota-
tion, cervical cancer datasets usually exhibit a long-tailed data distribu-
tion. When training a detector to detect the cancer cells in a WSI (Whole
Slice Image) image captured from the TCT (Thinprep Cytology Test)
specimen, head categories (e.g. normal cells and inflammatory cells) typ-
ically have a much larger number of samples than tail categories (e.g.
cancer cells). Most existing state-of-the-art long-tailed learning meth-
ods in object detection focus on category distribution statistics to solve
the problem in the long-tailed scenario, without considering the “hard-
ness” of each sample. To address this problem, in this work we propose
a Grad-Libra Loss that leverages the gradients to dynamically calibrate
the degree of hardness of each sample for different categories, and re-
balance the gradients of positive and negative samples. Our loss can thus
help the detector to put more emphasis on those hard samples in both
head and tail categories. Extensive experiments on a long-tailed TCT
WSI image dataset show that the mainstream detectors, e.g. RepPoints,
FCOS, ATSS, YOLOF, etc. trained using our proposed Gradient-Libra
Loss, achieved much higher (7.8%) mAP than that trained using cross-
entropy classification loss.
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1 Introduction

Cervical cancer is the fourth most frequently diagnosed cancer and the fourth
leading cause of cancer death in women [17]. Early diagnosis and screening of
cervical cancer can effectively help its treatment. To solve the error-prone, te-
dious, and time-consuming problems of manual analysis of cervical smears, deep
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learning based CAD (Computer-Aided Diagnosis) has been introduced to cervi-
cal cancer screening. However, due to the difficulty of cancer samples collection
and the cost of annotation, the number of cancer samples is far less than that
of normal samples, which shows a typical long-tailed distribution and leads to a
long-tailed class imbalance problem.

In this paper, we are mainly using object detectors to detect cancer cells in a
WSI (Whole Slide Image) image captured from a TCT (Thinprep Cytology Test)
specimen. The problem of training cell detectors on a long-tailed dataset mainly
comes from two aspects. First, the categories are extremely imbalanced, which
will cause the loss contributions of the tail classes to be easily overwhelmed by
the head classes. Second, for the object detection framework, the background
forms a large number of easy negative samples, which will also overwhelm the
training process and degrade the training performance. Note that for a particu-
lar category, the samples belonging to the category are positive samples, while
the samples of all the other categories and the background are negative samples.
Most of the existing methods addressing long-tailed problem require additional
statistics support [3, 6–9, 12] (e.g. data distribution statistics), or tedious opera-
tions [11, 21, 12] (e.g. fine-tuning and handcrafted head-tail class division). Data
re-sampling methods [6–8] require the acquisition of pre-computed data distri-
bution statistics, which may have the risks of over-fitting for tail classes and
under-fitting for head classes. Loss re-weighting methods [3, 9] also require data
distribution statistics for up-weighting the tail classes and down-weighting the
head classes at class level. Decoupled training schema [11, 21] decouples represen-
tation and classifier learning but requires an extra fine-tuning stage. BAGS [12]
divided all categories into several groups according to data distribution statistics
during the training stage but the handcrafted division may block the sharing of
information between the head and tail classes. In general, most existing methods
focus on data distribution statistics to solve the class imbalance problem in the
long-tailed scenario at class level, without taking into account the “hardness”
of each sample at sample level. In fact, we cannot ignore the diversity of samples.
A sample has different hardness (easy or hard) for the classification of different
categories. It can be a hard positive sample of its category and a hard negative
sample of other categories at the same time. Thus, there might be easy sam-
ples belonged to the tail classes get incorrectly up-weighted, or the opposite. To
address this problem, we propose a Grad-Libra Loss that leverages the gradi-
ents to dynamically calibrate the degree of hardness of each sample for different
categories, and re-balance the gradients of positive and negative samples.

To sum up, our contributions are as follows: (1) We propose a new perspective
to describe the long-tailed samples, which defines the concept of sample hardness
and calibrates the degree of hardness by gradients. (2) We provides a unified
framework to take the hardness into account for both head and tail classes and
present a novel Gradient Libra Loss that employs the gradients to adaptively re-
weight samples of different hardness. (3) We conduct comprehensive experiments
using a long-tailed cervical cell image dataset. Our method consistently surpasses
most existing methods and obtains a 7.8% mAP gain over the baseline model,
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Fig. 1. The framework of the cell detector. We propose a novel Grad-Libra Loss for
the classification branch. In the right part, we visualize the data distribution of the
long-tailed dataset along with example instances.

increasing the AP of frequent, common, and rare categories by 7.3%, 5.6%, and
8.4%, respectively.

2 System Framework

Fig.1 shows the framework of our cell detector, which is based on mainstream
object detectors like RepPoints, FCOS, ATSS, YOLOF, etc. During training, a
batch of TCT WSI image patches is sampled from a dataset with the long-tailed
distribution of cell categories and fed to the detector for loss calculation and
gradient backpropagation. While Smooth L1 Loss [2, 19, 22, 24] is usually used
to train the regression of the bounding box, the cross-entropy loss is the main
choice for the training of the classification branch. For the classification branch,
we employ multiple binary classifiers for multi-class classification and design a
novel Gradient Libra Loss. It employs the gradient to calibrate the degree of
hardness of each sample at sample level and takes hardness as the weight term
of the original cross-entropy loss function.

3 Gradient Libra Loss

To better explain our loss, we firstly analyze the connection between the gradi-
ents and positive-negative imbalance. Suppose we have a batch of samples I and
their features for the classification branch, and their output logits are used to
represent the attributes (e.g. easy or hard) of the samples. As shown in Fig.2, for
a sample x of class k, z = [z1, z2, ..., zC ]

T and p = [p1, p2, ..., pC ]
T are the output

logits and probabilities for each class, respectively. The ground-truth label y of
the sample is an one-hot vector, in which yi ∈ {0, 1}, 1 ≤ i ≤ C and yk = 1 and
yi = 0 (i ̸= k). Its gradient with regard to the output logits z in the original
cross-entropy LCE is as follows:

∂LCE

∂zi
=

{
pi − 1, if i = k

pi, if i ̸= k
(1)
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Fig. 2. Visualization of the detailed procedure of the classification loss function-
Gradient Libra Loss, which takes hardness as the weight term of the original cross-
entropy loss function. Note that the darker the color in the gradient bar, the stronger
the hardness.

Eq.1 means that for the sample x of class k, it obtains the encouraging gradi-
ent pi− 1 as positive sample but gets the penalty gradient pi as negative sample
for other class i(i ̸= k). As presented in [18], we choose the ratio r of cumula-
tive gradients between positive and negative samples as an indicator to measure
whether each category classifier is in a positive-negative balanced training state.
For iteration t+1, the ratio r is defined as r =

∑t
t∗=0 |∇+

zi(L)|\
∑t

t∗=0 |∇−
zi(L)|.

The gradients of positive samples ∇+
zi(L) and gradients of negative samples

∇−
zi(L) of output logit zi are formulated as:∇+

zi(L) = 1
|I|

∑
n∈I yni (p

n
i − 1),

∇−
zi(L) = 1

|I|
∑

n∈I(1 − yni )p
n
i . In general, for the head classes, the gradients

of positive and negative samples have similar magnitudes, and the ratio r is
close to or greater than 1. For the tail classes, the gradients of positive samples
are often overwhelmed by the gradients of negative samples, resulting in the
ratio r close to 0.

Our intention is to adopt the gradients to calibrate the hardness of the
samples and re-weight the loss function. We define g = [g1, g2, ..., gC ]

T , where
gi = |∂LCE

∂zi
|. g is equal to the norm of gradient w.r.t output logits z. g passes

through a monotonically increasing function F : g → G, and F is defined as:

F(g) = g − α · sin(g) (2)

G acts as the weight term of LCE . α ∈ (0, 1] is a modulating factor to
control the importance of samples. The integrated Grad-Libra Loss is expressed
as follows:

LGL = −
C∑
i

Gi log(p̂i), p̂i =

{
pi, if i = k

1− pi, if i ̸= k
(3)

Decouple the LCE according to the positive and negative level: L+
CE =

−yi log(pi) and L−
CE = −(1−yi) log(1−pi). L

+
CE and L−

CE represent the positive
and negative loss term in class i (omit the class index i for brevity), respectively.
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We set different modulating factors for positive samples and negative samples,
i.e., α+ and α−. Grad-Libra Loss in class i is decoupled as follows:

{
L+
GL = G+ · L+

CE

L−
GL = G− · L−

CE

,

{
G+ = (1− pi)− α+sin(1− pi)

G− = pi − α−sin(pi)
(4)

The unified framework of Grad-Libra Loss is written as:

LGL = −
C∑
i

L+
GL + L−

GL = −
C∑
i

F(g;α+) · L+
CE + F(g;α−) · L−

CE (5)

The gradient norm g is nonlinearly transformed by the function F and then
used as the weight of the loss function. In our unified framework, an appropriate
function F can achieve excellent performance.

Implication 1 (Positive-Negative Balance). As shown in Eq.4, α adjusts the
weights of positive and negative samples. The overall weight G will increase ac-
cording to the decrease of the α, as shown in the top right of Fig.2. The overall
importance of G+ and G− can be balanced by α+ and α−. Proper adjustment
of α+ and α− can promote positive-negative balanced training. Notably, differ-
ent detectors have different degrees of positive-negative imbalance. In order to
achieve a more satisfactory effect, it is necessary to re-adjust α+ and α− when
using different detectors.

Implication 2 (Hardness). G focuses on the hardness (easy or hard) of sam-
ples. G+ and G− adjust the weights of easy-hard positive and negative samples.
When a sample’s probability pi for a category is closer to the ground-truth, it is
more likely to be an easy sample of that category. The gradient norm gi becomes
smaller, and leads to a smaller weight Gi. Therefore, we use G to represent the
hardness of the samples. As shown in Fig.2, we visualize an example of loss com-
puting for a tail sample and employ different colors to indicate the hardness. For
a sample x belonging to a certain tail class i, its output logits z is transformed by
the sigmoid function into estimated probabilities p. The original cross-entropy
loss does not consider the hardness of samples for different categories (the weight
vector is set to 1), which seriously reduces the discrimination ability to of easy
or hard samples. For the proposed Gradient Libra Loss, it calculates the gra-
dient norm of the sample, obtains the degree of hardness through the function
of F , and uses it as G to weight the original cross-entropy loss. Through the
weight G we can estimate the hardness of the samples for different classes. For
example, as the positive sample (ground-truth is 1) of a certain tail class i, its
probability of 0.19 is very small, so it tends to be a hard-positive sample of its
own category (the weight Gi is marked by dark purple). As the negative sample
(ground-truth is 0) of other categories, it has different probabilities and therefore
different degrees of hardness (darker color represents higher hardness).
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Table 1. The performance of Grad-Libra Loss compared with other methods. G means
number of groups. * means adding the effect of α-balanced factor.

Method
frequent common rare

mAP
inflammation normal HSIL atrophy bare nucleus SCC trichomonad LSIL ASC US ASC H

CBL [3] 20.2 65.0 24.7 30.1 26.7 0.0 26.9 27.2 17.2 0.0 23.8
Seesaw [20] 71.3 75.4 55.9 87.2 58.7 2.1 9.1 61.3 26.4 2.3 45.0

CE 72.8 76.3 57.2 88.0 56.0 6.6 16.0 59.8 18.9 1.9 45.3
EQLv2 [18] 74.7 77.1 54.7 87.1 62.6 4.4 19.7 56.7 23.2 0.7 46.1

BAGS (G3) [12] 80.3 77.1 61.2 87.2 69.7 0.9 22.4 55.9 21.9 0.9 47.8
BAGS (G2) [12] 80.4 77.5 54.8 87.4 70.1 3.0 29.4 59.1 27.1 1.4 49.0

Focal [14] 80.4 80.8 56.2 85.0 66.8 5.6 31.6 53.9 24.0 6.0 49.0
Focal* [14] 79.6 81.7 60.9 87.3 72.7 3.5 31.2 61.1 24.5 3.4 50.6

Grad-Libra (ours) 80.1 83.2 61.6 88.3 69.7 10.3 40.6 60.2 27.3 9.6 53.1

4 Experiments

4.1 Dataset and Evaluation Metrics

Public cervical cancer datasets [16, 10] are small in scale, balanced in categories,
which cannot represent the real distribution in clinical practice. Thus, we estab-
lish the CCA-LT dataset 1 that is closer to the actual long-tailed data distribu-
tion. We visualize the data distribution of the CCA-LT dataset along with exam-
ple instances in Fig.1. The CCA-LT dataset was captured by a whole-slide scan-
ning machine. The specimens are prepared by Thinprep Cytology Test method
with H&E staining [23] to give the image resolution of about 80000×60000 pix-
els. The dataset is divided into training-validation set and test set (7:3). The
training-validation set is overlap-cropped for data augmentation, while the test
set is not. Then we crop each whole slide digital image into patches of 512×512
pixels for training. To evaluate detection performance, we follow the PASCAL
VOC evaluation criteria [4], i.e., mean average precision (mAP). We also report
AP for each category, which is calculated with IoU threshold of 0.5. The AP and
mean recall for rare, common, and frequent categories are denoted as APr, APc,
APf , mRr, mRc, and mRf , respectively.

4.2 Implementation Details

For a fair comparison, all experiments are performed on MMDetecion [1] plat-
form in PyTorch [15] framework. We use 4 V100 GPUs for training. We choose
the anchor-free detector RepPoints [22] with FPN structure [13] as the baseline
model. The optimizer is stochastic gradient descent (SGD) with momentum 0.9
and weight decay 0.0001. The initial learning rate is set as 0.002, which is di-
vided by 10 after 8 and 11 epochs. We employ the linear warming up policy [5]
to start the training and the warm-up ratio is set as 0.001. The model is trained
with batch size of 32 for 12 epochs.

1 https://github.com/M-LLiu/Grad-Libra
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Fig. 3. The comparison of gradient balance between Grad-Libra and Cross-Entropy
Loss. (a): The cumulative gradient ratio in the entire training process for each category.
(b): The normalized L2 weight norm in the last classifier layer for each category.

4.3 Benchmark Results

We compare the performance of Grad-Libra Loss with other state-of-the-art
methods and report the results in Table 1. Without any bells and whistles,
Grad-Libra Loss achieves better results than all other losses and exceeds the
CE baseline 7.8% mAP. Without sacrificing the accuracy of the head classes,
Grad-Libra Loss brings significant performance gains to the tail classes, e.g. in-
creasing APf by 7.3%, APc by 5.6%, and APr by 8.4%, respectively. We further
compare Grad-Libra Loss with recent designs, i.e., Class-balanced Loss (CBL)
[3], Balanced Group Softmax (BAGS) [12], Equalization Loss v2 (EQLv2) [18],
and Seesaw Loss (Seesaw) [20] in Table 1. Notably, CBL and Seesaw achieve
21.2% and 0.3% lower mAP than the CE baseline, respectively. CBL and See-
saw, which require data distribution information at class level or the number of
samples in sample level, have poor robustness and drop sharply in performance.
We follow BAGS and split the classes into 2 groups (0, 10000), (10000, +∞) and
3 groups (0, 5000), (5000, 10000), (10000, +∞) for group softmax computation,
respectively. The division of 2 groups is better, which illustrates the necessity of
sharing the head knowledge to reduce confusion between head and tail classes
and enhances tail discrimination. Designed to address the extreme easy-hard
imbalance problem, Focal Loss [14] can not effectively alleviate the tail classes
problem. By employing the α-balanced factor in regulating the positive-negative
imbalance, Focal* achieves 1.6% higher mAP, which confirms the importance of
focusing on the positive-negative imbalance. In contrast, Grad-Libra Loss em-
ploys gradient information to re-balance positive-negative samples of different
hardness and achieves the best 53.1% mAP performance. Grad-Libra Loss ex-
ceeds the second-best loss Focal* by 0.5% APf , 1.1% APc, and 3.2% APr in
frequent, common, and rare categories, respectively.

4.4 Performance Analysis

Does our method balance gradients well? As shown in Fig.3(a), for Cross-
Entropy Loss, the tail classes obtain the gradient imbalance of positive and
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Fig. 4. The effects of α+ and α−. (a): The individual effects of α+ from 0.2 to 0.8. (b):
The individual effects of α− from 0.2 to 0.8. CE means the original cross-entorpy loss.

Table 2. Effect of combining α+ and α− on head and tail classes.

α+ α− mRf APf mRc APc mRr APr mAP

- - 83.8 72.8 80.6 66.8 54.3 35.3 45.3

0.2 0.6 96.3 80.3 94.6 71.9 81.1 42.3 52.0
0.6 0.6 96.9 80.7 97.2 72.5 83.2 44.2 52.5
0.8 0.8 96.8 80.1 98.0 72.4 89.9 43.7 53.1

negative samples, which means that the gradients of positive samples are over-
whelmed by the gradients of negative samples. In contrast, our method re-
balances the gradients of positive and negative samples in appropriate parame-
ters. Does our method balance classifiers well? Decoupled training meth-
ods [11, 25] demonstrate that if models are trained with long-tailed datasets, the
head classes tend to learn a classifier with larger magnitudes and yields a wider
classification boundary in feature space but it hurt data-scarce classes. As shown
in Fig.3(b), the normalized weight norm of the baseline model decreases sharply
in tail classes. In contrast, our method provides more balanced classifier weight
magnitudes, expands the classification boundary of the tail classes in feature
space, and enhances the feature expression of the tail classes.

4.5 Ablation Study

Individual Parameter Contribution. We study the impact of the individual
hyper-parameter in Fig.4. Both α+ and α− can improve the performance of rare,
common, and frequent categories. The effect of α+ surpasses the baseline by 1.7
to 4.4 mAP. Up-weighting the hard positive samples makes the network focus
on the tail classes. The effect of α− exceeds the baseline by 3.7 to 5.2 mAP.
α− prevents vast easy negative samples from producing overwhelming loss and
dominating the gradients. Notably, the effect of α− is better than α+. Grad-
Libra Loss. By combining both α+ and α−, the classification performance is
further improved, see Table 2. The performances on rare categories are signifi-
cantly improved. α+ = 0.8 and α− = 0.8 work best overall, achieving a 53.1%
mAP, increasing APf by 7.3%, APc by 5.6% and APr by 8.4% respectively. Our
method also significantly increases the recall rate, increasing mRf by 13%, mRc

by 17.4%, and mRr by 35.6%, respectively. Applied to other detectors. To
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Table 3. Performance comparison when Grad-Libra Loss is applied to other detectors.

Detector Grad-Libra mRf APf mRc APc mRr APr mAP

FCOS
[19] 83.1 70.8 81.6 66.2 55.3 38.0 45.9

✓ 92.9 78.7 97.2 72.7 86.3 42.2 51.9

ATSS
[24] 79.3 63.5 73.7 60.9 43.8 33.5 42.0

✓ 96.1 79.1 96.1 70.3 80.4 41.1 50.8

YOLOF
[2] 84.9 64.9 82.6 66.1 42.7 38.3 46.5

✓ 88.4 68.5 97.3 67.8 85.5 41.0 49.1

demonstrate the generalization ability of Grad-Libra across different detectors,
it is applied to FCOS [19], ATSS [24], and YOLOF [2], separately. As presented
in Table 3, Grad-Libra also performs well on all those detectors. The overall im-
provements for FCOS, ATSS, and YOLOF are 6%, 8.8%, and 3.5%, respectively.
For rare categories, the mean recall of FCOS, ATSS, and YOLOF increases by
31%, 36.6%, and 42.8%, respectively.

5 Conclusion

In this work, we focus on the long-tailed class imbalance problem in cervical
cancer detection scenario. We propose a Grad-Libra Loss that leverages the gra-
dients to dynamically calibrate the degree of hardness of each sample for different
categories and re-balance the gradients of positive and negative samples. Exten-
sive experiments show that our method obtains better performance compared
with other state-of-the-art methods.
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